Establishing the human equivalent dose for PTG-100, an oral peptide antagonist of integrin α4β7
Larry Mattheakis, Genet Zemeed, Lu Bai, Vinh Tran, Herodion Celino, Brian Frederick, Li Zhao, Miudra Dogra, James Tovera, Shairaz Shah, Namitha Rao, Sarah Hadley, Ashok Bhandari, Thamil Annamalai, Dinesh Patel, David Liu
Protagonist Therapeutics, Milpitas, CA

ABSTRACT

PTG-100, a novel selective oral peptide antagonist of α4β7 integrin, is being developed for the treatment of patients with moderate to severe ulcerative colitis. PTG-100 alters trafficking of gut homing T cells in preclinical animal models, and its potency and selectivity are similar to that of the approved anti-α4β7 antibody vedutizumab. Pharmacokinetic studies in rodent or cynomolgus (cyno) monkeys show that PTG-100 exposure in the blood is <0.1% of dose, but >90% of dose in the small intestine and colon and up to 40% in feces, which indicate PTG-100 is orally stable and largely gut restricted. To help establish the potential efficacious dose range in humans, we developed a receptor occupancy assay to measure occupancy of CD4+ memory α4β7+ T cells in mouse blood and gastrointestinal (G) tissues and in cyno blood. Daily dosing of PTG-100 and other similar antagonists in DSS (dextran sodium sulfate) treated mice showed a significant reduction in disease activity index (DAI), mucosal histopathology, and number of β7+ positive cells in the distal colon lesions. At these efficacious oral doses, α4β7 receptor occupancy in the blood, mesenteric lymph nodes, and Peyer’s Patches ranged from 45-81% at 4 h post dose. Single and multiple oral gavage administration of PTG-100 in healthy cynons showed that despite low systemic exposure, occupancy of blood αβ7 by PTG-100 is dose proportional, time-dependent, and influenced by the small intestine and fasted state of the animal. Allometric scaling from the mouse to human based on whole body surface area suggests that a similar level of blood receptor occupancy is associated with the cyno equivalent dose. The data suggests that 100% receptor occupancy over 24 h in the blood or gut in the mouse DSS model is not required for efficacy by an oral gut-restricted α4β7 antagonist. Together, these studies point to blood receptor occupancy and possibly receptor expression as useful clinical surrogates for the local effects of PTG-100 in the intestine.

RESULTS

Table 1. PTG-100 is selective for human circulating α4β7+ memory T cells.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>MAbα4/β7</th>
<th>VSCAN-4</th>
<th>KAM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC50 [nM]</td>
<td>1.3</td>
<td>>100,000</td>
<td>>100,000</td>
</tr>
</tbody>
</table>

Table 2. PTG-100 exposure is largely gut-restricted (Fp<0.5). 30mg/kg PO administration in healthy C57BL/6 mouse.

<table>
<thead>
<tr>
<th>Dose [mg/kg]</th>
<th>AUC [µg/mL/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>88</td>
</tr>
<tr>
<td>53</td>
<td>30</td>
</tr>
<tr>
<td>160</td>
<td>79</td>
</tr>
</tbody>
</table>

PHARMACOKINETIC STUDIES

PTG-100 reduces number of β7+ cells in the lamina propria of the distal colon comparable to α4β7. 15 day chronic DSS colitis study.

15 day chronic DSS colitis study. BALB/c mice were treated continuously with 3% DSS. PTG-100 total daily dose was a combination of oral gavage BID plus drug in the drinking water. At 4 h post last dose, whole blood, MLN and PP were collected for α4β7 receptor occupancy of memory CD4+ T cells measured by FACS. Distal colon sections were fixed and processed for β7+ cell IHC staining using the anti-β7 antibody M293. Data is presented as means ± SD. n=10 mice per group. Statistical significance relative to vehicle control assessed by one-way ANOVA, *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, not significant.

PTG-100 increases circulating numbers of α4β7+ but not α4β7- CD4+ effector memory T cells in blood.

Figure 4. PTG-100 receptor occupancy of CD4+ α4β7+ memory T cells in whole blood correlates to mesenteric lymph node (MLN) and Peyer’s Patches (PP).

Figure 5. PTG-100 reduces number of β7+ cells in the lamina propria of the distal colon comparable to α4β7. 15 day chronic DSS colitis study.

Figure 6. Specific downregulation of α4β7 expression on CD4+ effector memory T cells in blood.

PHARMACODYNAMICS IN DSS COLITIS MICE

PTG-100 treatment decreases disease activity index (DAI) compared to vehicle control.

CONCLUSIONS

- PTG-100 is the first oral antagonist selective for α4β7 integrin, an IBD target clinically validated by the approval of vedutizumab.
- JR data show that PTG-100 exposure is gut restricted. Exposure in the small intestine, colon and Peyer’s Patches is 150 to 480 fold higher compared to plasma based on AUC.
- PTG-100 reduces Disease Activity Index and ββ7 cell number in the colon lamina propria in the mouse DSS colitis model comparable to α4β7 mAb.
- Target engagement by PTG-100 is accompanied by specific downregulation of α4β7 expression and increase in circulating effector memory T cells in the blood of colitis mice which indicate pharmacological activity of PTG-100.
- High exposure in gut tissues and loss of α4β7 expression may explain PTG-100’s significant pharmacological activity at less than 100% blood receptor occupancy.
- PTG-100 exhibits dose dependent target engagement in cynomolgus monkeys.
- Human equivalent doses established by allometric scaling based on blood target engagement and pharmacological activity observed in colitis mice and healthy monkeys.

PTG-100 is currently being investigated in a Phase 1 clinical trial in normal healthy volunteers.

CONTACT INFORMATION
Larry Mattheakis, Ph.D.
Protagonist Therapeutics
521 Cottonwood Dr.,
Milpitas, CA 95035
Email: lmattheakis@protagonist-inc.com

www.protagonist-inc.com